
-

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
-

~~~~~~
- -

Similarly when D is Da ~ 
Df , 

or D
1 

we have I*D I~DI~ ;

• but I*D* need not be equivalent to these, since the first deletion

might “confuse” the ages of the remaining elements. For example, the

reader should have little difficulty constructing B functions which

* * *
are I D insensitive but not I D insensitive.

L I 

18 
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1. Necessary and Sufficient Conditions.

We can make further progress in understanding deletion insensitivity

if we convert the definitions into properties of the R function. Let

be the set of all permutations on n elements; and if x is such a

permutation, let Xk be its k-th element, frc~n left to right, for

1 < k < n  • If x € P~ and y € , we write

[x\j = y]

for the function of x , j  , and y which is 1 if R(x\j ) = y ,

otherwise 0 • In terms of this not ation, the following lemma is an

immediate consequence of the definitions :
.

Lemma 2. An B function is

* . . 2
(a) I D insensitive if and only if ~ [x\j = y] = n , for all

r x€ Pn

l< j <n

and n> l

(b) I*D0 
insensitive if and only if ~~~ [x\j = y] = n , for all

x€ Pn

and n > j > 1 ;

(c) I~D insensitive if and only if ~ [x\l = y] = n , for all
a t q x€ Pn

y € ~~~~ and. n > 1 ;

(d ) I*Da insensitive if and only if ~ [x\xk = y] = n , for ~~~~~~~

• x € P n

~ 
€ 
~n-l 

and. n > k > 1 ;

l~
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(e )  I D f insensitive if and only if I’ [x\x1 = y] = n , for all
x €

• 
y € P

~~~ 
and n > 1 ;

( f )  I*D1 insensitive if and only if ~~ 
[x\x~ = y) = n , for all

x € P n

and n > l .  ~

Clearly (b) ~ (c), (d) ~ (e) and (f), and (b) or (d) ~ (a), as we already

knew. Furthermore it is easy to see that these are the ~~~~ implications

between the six types; we might have (e) and. (f) and. (c) but not (a) ,  etc.

The next result is less obvi ous, possibly even surprising, since it

states that a comparatively weak form of deletion insensitivity is

equivalent to a comparatively strong property.

Theorem 1. I*D ~ I*D 1* c~ (I ,D )* •0 r r r  r r

Proof. Since (Ir~Dr)
* 

~ 
ID~,I , we must only show that IDrI ~ ~~DQ

and I*D0 r~ (I ,D )*

Assume first that a given B function is Ii)r
1 deletion insensitive,

- • 
I and consider the sequence of operat ions I~DrIr for some fixed n . Any

of the n .(n+l)~ equally prob able realizations of such operat ions defines

a sequence of permutations it1,... ,it
~ ÷2 

such that 
~~~~~~~ 

is a

uniformly distributed permutation on [1,2,...,n)  ; hence every possible

- 
• 

permutation ~(n ~~2 ) occurs n(n+ 1) times. Let p (n~~2) =

and = ... y~_~y~ , where y .~ = j  , and suppose that t is the

element missing from yj . . .y 1~ , where 1 ~~t ~~n+1 ; then = Y~ or

y - l  according as y~ < t or > t • The number of ways to obtain

is

20
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l<t~~n+l 

((x
~~P 

[x\(t-1) = P(Yi~~~.~~nl
)1) (xcF 

[x’-\t =

t > j  t < j  
_I
J
J

= ~~ [x\t p (y1 ...y~_ 1)] 
+ ~~ Ix\j = 

~~~~~~~~~~ ~~x€ P  x€ P  
-

1<t<n 
n

= n
2 

+ ~~~ [x\j = p (y1 ... yx€ P n
n

b:,- Lemma 2(a) ,  since R is I*Dr deletion insensitive; and this equals

n(n+l) by assumption. Therefore R is I*D0 deletion insensitive by

Lemn~i 2(b).

Now assume that a given R function is ID0 deletion insensitive,

• and 03n:ider any given sequence of operations A1(u1), ... , A~~~ (U~~~ )

c~ rr tsponding to n ‘r ‘s and m Dr ‘s, where there are respectively

elements present before the deletions. Any of the n ij . . .  i~

• :it-illv probable realizations of such operations defines a sequence of

• -r~~i~at~ ons ~~~~~~~~~~ , 
where the keys inserted are [1,2,...,n] in

~: orn e ord c- r , and we wi sh to prove that each of the (n-m )~ possible values

of ~~(~t~~÷~~) occurs n d ~ ... d ’/ (n -m)~ times. Let z1,..., z be the

elements deleted, so that it z ... z is a permutation of the nml-n l in

elements inserted. We will prove that each of these n permutations

occur s exactly d~~...d times.

In order to avoid cumbersom notations, a single example should suffice

;~~ lain the ba sic idea. Suppose the sequence is

‘r ‘r ‘r ‘r ‘r Dr ‘r Dr Dr ‘r ‘r

H 
J 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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so that ri = 8 , m = 3 , d~d~d~ = 5 5 14 , and. suppose we want to coun t
- 

- 
how many realizations will yield 

~~~ 
= 5 1 u 3 7 and z

1
z
2
z
3 

= 8 2

Working backwards, we must have 5
9 = 5 16 , = a permutation on

[1,14,5, 1) such that = it
9 
, = a permutation x~x~x3

x14x5
on [1,2,14,5, 6) such that ~~\2 = , and. = a permutation on

[x1,x2,x3, x1 , 8) such that = x~x~x3
x14 . By Lemma 2(b) the

number o1 choices for 
~8 

is 14 , arid for each 
~8 there are 5

suitable ltr 
‘s~ and for each it

7 
there are 5 suitable ,r~ ‘a,

hence there are ~~~~~~ solutions. It should be clear that this

method of proof is completely general. 0

This completes a characterization of deletion insensitivity

involving D , D , and D : We have three classes
r 0 q

(I ,o)
* 

~ 
I:DrI: ~ I~D ~ I*Dr

• (10,D0) * 
~ IQDQIQ ~ I D 0 ~ ID0 I;DrI; (Iry Dr )

~

(Io~Dq)
* 

~ ID qI ~ I D q ~ I D q

and (Ir)Do)
* (Ir~

Dq)~ 
I D 01 I;DqI; 

are impossible.

~



• 7. Age-sensitive Deletions.

Let us now consider Da 
more closely.

Theorem 2. An R function is I*D 1* deletion insensitive if and only
• 

• r a r

if, for 1 < j, k < n and all 
~ 

€ 
~n-l ~ 

there exists a unique x €

such that x,~ = j  and R(x\j) = y

Assume first that a given R function is I*D 1* deletion insensitive,

and consider the sequence of operations 
~~
DaIr 

for some fixed n , where

the deletion operation removes the k-th element inserted. Any of the

(n+l)~ equally probable realizations of such operations defines a sequence

of permutations s1,..., it~~~2 
such that p(itn+2) is a uniformly distributed

permutation on (l,2,...,n) , hence every possible permutation p(it~~2)

occurs n+l times. Now argue as in Theorem 1 with the extra restriction

that x sP is such that X
k 

is the element being deleted; using

Lemma 2(d) we find that the number of ways to obtain p(~t~~~2
) = y1 ...

is

n + 2I~ [x\j =

X E  Pn

when y~ j , hence the condition in Theorem 2 is necessary.

Conversely, assume that the stated condition holds, and consider a

• . p n-p
• given s€quence o~ operations IrDaIr 

where D
a deletes the k-th element

inserted. For example, the sequence mi ght be IrIr~r
IrIrDaIrIr 

with

n = 7 , p = 5 , and k = 14 • The number of realizations which yield
- 

I ~ 
= 3 1 1 4 5 7 2  is the number of permutations x of [1,3,14,5, 6) such

that x14 = 6 and x\( = 3 1145 ; and by hypothesis there is just one

:ueh x • There are sev~ ri choices of it
8 

with p( 1r8) = 3 1 1 4 5 6 2 , and

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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each such choice occurs once. This argument clearly generalizes to

prove that B is IrDaIr 
deletion insensitive. 0

* * *Corollary. IrDaIr (Ir~
Dr)

Proof. The condition of Theorem 2 is much stronger than the condition

• for ID 0 in Lemma 2(b), since the latter requires only that the equ atlcr .

R(x\j ) = y have exactly n solutions when j  and y are given. Now

apply Theorem 1. 0

The condition of Theorem 2 is not strong enough to prove ( I , D ) ’

insensitivity, which seems to be very strong property indeed. The author

has been unable to construct any R functions which are (Ir~
Da)~

lii-ensitive except those which satisfy the following strong requirement:

Condition Q. For each 1 < k < n there exists a permutation q1 ...
of [l,...,k-l,k+l,...,n) such that R(x1x2 ... xfl \xk) p(x ... x~~~~ ) .

In other words, deletion of the k-th element inserted will permute the

other elements in a way depending only on k , not on their values.

This condition may not be necessary, but it is at least sufficient

to prove what we want:

Theorem 3. An B function which satisfies Condition Q is (i ,D )~~r a

deletion insensitive.

Proof. Consider the operation sequence

Tr ir ir ir ir Da ir DaDa Ir ir

where the three Da ‘ s respectively have k = 2 , 3, 14 , and let us count

how many reali zation s will yield it
11 = 5 1 63 7  after deleting the elements

214 
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8214 in this order. Suppose the eight insertions are z1z2
z
3
z14z5z6z7z5

respectively, a permutation of [l,2,...,8) ; we will show that the z ‘s are

uniquely determined by these assumptions. For concreteness, let us

suppose that some of the permutations implied by Condition Q are

x1x2x3x 14x5\x2 = x
3

x1x5x14 , x1x2x
3

x14x5\x14 = x2x5
x
3
x1 , and

-

~ 
• x1x2x3x14\x2 x

3
x1x14 • Then we know that it

5 
= z1z2z3

z14z5 , z2 = 8 ,

a1 = z
3

z1z5z14 , = z3
z1z5

z14z6 , z14 = 2 , it
8 = z1z6z5z~ Z

6 = 14

= z5 z1z~ , it
11 = z5

z1z3
z~z8 = 5 1 63 7  ; hence z1... z8 = 1 8 6 25 1 4 3 7 .

This argument clearly generalizes to prove the theorem, since there is

always a unique realization for each choice of itm+n and the sequence

of element s deleted., for each choice of k ‘ s in the Da operations. ~

There is an interesting way to weaken Condition Q to obtain a somewhat

weaker kind. of deletion insensitivity, yet one which is stronger than that

of Lemma 2 ( d ) :

4
Condition %. For each 1 < k < n there exists a sequence of n pernut at i~ n s

(q1,1... q1,~~_1
), ~ ‘ (

~~ ,i~~” ~~,n-l~ 
of jl,...,k-l, k÷1,..., n) with

the following property: For all y € 
~~~~~~~~~ 

there exi sts a permutation

of [1,..., n) , possibly depending on y , such that

p( x l ... x
~K l xk +l . .. x

fl
) = y and x,~ = j  implies

= ~~~~~~~~~~~~~~~~~~~~

In other words, when we delete the k-th element inserted the result is

- 

- one of ri specified permutations of the remaining elements; and if the

remai ning elements are held fixed., while x~K runs through all ri possible

values relative to them, the results run through these n specified
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permutations in some order. Condition Q. implies Condition Q~ , since

the n specified permutations might be identical.

• This rather peculi ar condition seems to be just what is needed to

vrove the following slightly weakened form of Theorem 3

Theorem 14. An R function which satisfies Condition Q is (I , D )D 0 a

d~ !ction insensitive.

Proof. As in the previous proofs, it is mcst convenient to consider a

tvire-or-less random example which is sufficiently general to be c~nv1ncin~

‘~rithout the introduction of elaborate notation. Consider the operation

- ~~ - f lCe

10 10 10 I~ I~ Da 10 Da Da lo b

whe r- . the three Da ‘ c have k = 2, 14 , 14 , respectively. There are

1.. .3 .L.5 .5 . 14.5 reali zations of thi s sequence; we will show that 5.5 .J.~

them will yield any given value of p( 1r11) . For example, suppose

p(rr11) 
3 1 1 42 5  . There are 5 choices for the q-permutation in the

~irst  deletion ; let us choose one of these, and assume for example that

th~ deletion takes it
5 

= z1z2z
3

z 14z5 
into ii- = zj z~,z z f ~ = z

3
z1z

5 z 14
Is; In other words , one of the q-permut at ions for n = 5 and k = 2 is

assumed to be 3 154  . (If 3 15 1 4  occurs as two or more of the

q-permutations we also choose the subscript j  such that

(3, 1,5, 14) = ~~~~~~~~~~~~~~~~~~~~~ ; thus, there are 5 distinct choices

~ ossible even when the q-permutationz are not dist inct . )  Then if

= ~~~~~~~~~~ we must delete the 4—th oldest element, whi ch is

(since it equals z5 ); again we have 5 q-permut ations to choose : ron~,

and let us suppose that the q-pexmiut ation for the second deletion yields 

-• . • . • --
~~

- •- - • • - - - • • -- .. --•~~- ••~~~-- - - - - -. • -• . •--- •-~~~ -- . •- • • •  ----• - - I



z~ z~ z~ zj = z~z~z~z~ ; we similarly shall choose one of the 14

q-permut atio~ s now available for the last deletion and suppose that it

yields it
9 

= Zj ’ Z~~’Z~~’ = Z~Z~Z~

To make p( 1t11) = 3 1 1 42 5  we now can work backwards and identify

• the relative sizes of various elements: Since p( 1t
9

) = 213 , we know

that p (z~ z~ z~ ) = 321  . This value of y together with Condition

allows us to determine p ( i t 8) , since each possible value of z~ relative

to Zj~ z~~, zj~ corresponds to one of the predetermined choices of

q-permutation once p (z~~z~~z~ ) is known . Ifl our case p ( n 8) must be

143 12  , 1 432 1  , 1 42 3 1  , or 3 2 1 4 1  , and our choice of q-permut ation

subscript tells us which of these occur s, say 14 2 3 1 ; then

P (Zj Z~~Z L Z ~ ) = 2 1 1 43  and we can similarly reconstruct p ( it7 ) , which

might be 2135  14 . In the same way p (it6 ) = 213 14 implies that

p ( z 1z
3

z 14z5 ) 1 21 43  ; and we can use this knowledge to find

say 213 5 14 . Each I insertion has now been characterized, thus each
0

of our 5.5.4 choices has led to a unique realization such that

= 3 1 1 42 5  . 0

• Although 10 is a somewhat artificial type of random insertion,

L Theorem 14 is interesting because (Io~Da)~ insensitivity implies I*Da

insensitivity, and. this special case is not artificial.

Let us conclude our theoretical investigations by considering

briefly the fifo and lifo deletion types, Df 
and • If the B

f unction satisfies

R(x1x2...x~ \x 1) = p (X2 . . .x )

it is obviously (Ir~D~) 
insensitive ; note that this condition might

hold even though neither Condition Q nor are satisfied, in fact the

_ _  —- - - - - --~~~~~~,-~~~~ - •
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weak condition of Lemma 2 (a) might not even hold. On the other hand

when the R function does not satisfy the above formula, there appear

to be no interesting conditions which guarantee I*D insensitivity,

other than the condition we have already discussed. (We might have,

say, R(x1 x2 ... x~\x1) = p (x3 
x2 x4 ... Xn) and R(x1 x2 ... x~\x2) =

• p(x1
x
3 
... x~ ) ; these conditions lead to (Ir~Df)

* insensitivity

• without the full generality of Condition 0, but they don ’t seem to be

very interesting.) Essentially the same remarks hold also for lifo-

deletions, if R does or does not satisfy

R(Xi•~~~
Xn_i Xn\Xn) = p (x1 ...x~_ 1)

4

4.
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3. Applications.

• Let us finally apply these theorems to some important dat a organizations.

Sorted and unsorted linear lists have every possible type of insensitivity

to deletions, but this is obvious without the above theory.

Binary search trees provide what is perh aps the most interesting

application. We have already mentioned that Hibbard [3] originated this

theory by essentially proving that the R function defined in Section 2

above is I*Dr insensitive. 1~ uth {7, answer to exercise 6.2.2-13 ]

observed that it is in fact I*Da insensitive, and. then Khott [6] went

much further, proving that Hibbard’s B function is (Io~Da)
* insensitive.

In particular, if we do n random insertions, followed by m < n fifo-

deletions, the resulting tree has the shape distribution of a binary tree

after n-m random insertions. This is a di f ficult theorem to prove,

perhaps the “deepest” result about a data structure which had been obtained

by anyone before 1975 .

It is possible to establish Knott’s theorem using the above theory;

in fact, much of that theory was motivated by what he did. We want to

• chow that the binary search tree organization satisfies Condition

Let k <n be given, and. for 1 < £ < n let

p

J 3- ... (k-1)(k+1) ...n , if I K k ;
q1,1 ~1,~~_ 1 

1... (k-l)2(k+l) ... (I-l)(i+l) ... n , if I > k

Let y = y1.. .y~_ 1 c P ~ be given, and let z1... z~_1 be the in~~rse

permutation, so that y = j  . It is not difficult to verify that
• j

Condition holds with the permutation d.efined by

, if z~~<k

p.  = ~ z~+l , if z. k

, i f j = n
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Thus binary search trees are (I ,D )’ insensitive to deletions

using Hibbard’s method. On the other hand we have seen that they are

not (Ir~Dr)
* insensitive, so by Theorem 1 they are not even I*D0

insensitive.

Suppose we define deletion in a different way, essentially by

interchanging left and right in Hibbard’s method.: Let

R(xi
X
2~~••X n

\j) P(Xl...Xk l Xk+l ...Xn) or

where xk = j  and. x
1 = j-l if j  > 1 , and where x,~ is deleted if

• 
- j  1 or £ < k , otherwise x1 

is deleted. (For example, this changes

R(l32\i), R(312\3) to 21 and R(2l3\2), R(23 l\2) to 12 in the

table of Section 2.) This function is (10,D )
* insensitive to deletions,

and it also satisfies Lemma 2(c) so it is (Ib~Dq)
* insensitive as well.

F’urthermorc, like 1-Iibbard’s function it possesses (Ir~DI)
* insensitivity.

We can also verify (Ib~
Dq~

DI) 
insensitivity, if the l

b 
insertions

are biased by the most recent Dq (not D
2 ) 

deletion. (Is it

(Ib~
Dq)Da)~ 

insensitive in this sense?)

Jean Vuillemin [8] has recently defined a usefti type of data

organization which he calls binomial queues, and Mark Brown [2] has shown

• that they are highly insensitive to deletions. In fact, Brown proved that

the corresponding B function satisfies Condition Q, hence it is (Ir~
Da)

4

and (Ir~
Dr)~ 

insensitive.

The leftist tree structures developed in 1971 by Clark Crane (see

7, Section 5.2.3]) unfortunately do not share such nice properties. In

fact, the corresponding function R(x1x2 x~~x~~\j) 
has a pronounced bias

towards 3 2 1 and 2 3 1 except when j = 1 , and the function

~(x1 x
2~~~x14~~~\l) is e~~remely biased. Therefore leftist trees are quite

sensitive to deletions, and it will probably be very difficult to analyze

• 
them. In fact, the analysi s for ~ur- ~n~ ertions is already very formidable.

~imi1ar remarks apply to balanced trees. 



9. Degeneracy.

We have defined deletion insensitivity only in terms of the R

function, but when many different permutations lead to the same data

• 
• 

- structure (i.e., if they yield the same S value) it might be possible

to have deletion insensitivity that cannot be carried back to any R

function for the organization. For example, when the data structure

consists of a sorted linear list, the S function is essentially constant,

so we trivially have (Ir~Do)
* insensitivity; but we have observed that

no R function can have this property.

In other words the conditions we have derived in Theorems 1 and 2

are sufficient but not necessarily necessary for insensitivity. An example

can be given of a data organization which is IDrI 
insensitive when

the S equivalences are considered, yet it is not I*13o 
insensitive:

Let B(x1 ... xfl\xk) = p (x1 ... Xk l  xk+l ... x )  for n 
~ 3 ,

R(x1x2~~\l) = 12 , B(x1
x
2~~\2) = 21 , R(l23~~) = R(132~~) = R (23l~~) = 12 ,

B(213\~) = R(3 l2\3) = R(32l\3) = 21 ; and let S(x1...x) = o(y1...y~)

if and only if x1 ... x~ = y1 ... or n > 3 and x14 ... Xn =

and S(p(x1x2x5
)) = S(p(y1y2y3

))  , where s(132) = 3(231) and

3(3 12) = S(3 21) . The operations I II D
q 

leave a nonrandom result;

but 1r~r’r 
clearly produces a random structure when n 

~ 3 , and this

can be verified. also for n = 3 . Thus Theorem 1 is not true when we

take the S equivalences into account.

It appears unlikely that any conditions weaker than those discussed
b

in the above lemmas and theorems will be useful for proving deletion

• insensitivity in practice. Furthermore it is not difficult to see that

~h existence of an R function satisfying the six respective conditions

in Lemma 2 is, in fact, both necessary and sufficient for the six

corresponding kinds of I*D insensitivity. (We proved this for I*Dr in

Section 3.)

LA
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